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It is shown how the unsteady, nonlinear critical-layer equation determines the 
evolution of instability waves in a weak adverse-pressure-gradient boundary layer. 
Numeha1 solutions show that the nonlinearity halts the growth of these inviscidly 
unstable waves. The stabilizing effect of nonlinearity, in the present case, can be 
described as a cqnsequence of either the increase (toward zero) of the phase jump 
across the critical layer or the roll-up of the critical-layer disturbance vorticity. 

1. Introduction 
Boundary-layer-transition experiments often involve spatially growing instability 

waves generated by relatively two-dimensional, single-frequency excitation devices 
such as vibrating ribbons or acoustic speakers. While transitions in technological 
devices often involve adverse pressure gradients, experimenters frequently go to 
great lengths to eliminate these gradients - in which case the initial instability-wave 
growth must result from viscous effects that are primarily confined to a thin wall layer 
and a so-called critical layer a t  sufficiently large Reynolds numbers. 

The flow is then nearly steady in a reference frame moving with the wave, with 
the corresponding streamlines exhibiting the familiar Kelvin ‘cat’s-eye ’ pattern. The 
vorticity is almost constant within the cat’s eye, which spreads out laterally as the 
wave propagates downstream - even when nonlinear effects first become important 
within the critical layer (Goldstein & Durbin 1986). However, critical-layer non- 
linearity seems to have been masked by three-dimensional effects in the zero- 
pressure-gradient experiments. 

The situation is quite different in the presence of adverse pressure gradients, as 
suggested by figure 1, which is a photograph of the boundary-layer flow over a 
two-dimensional ramp at 4.8” to the stream. The instability wave is primarily 
two-dimensional, and the streaklines suggest a predominantly inviscid roll-up of its 
constant-vorticity lines, which is quite different from the lateral vorticity spreading 
that occurs in the absence of adverse pressure gradients. While the photograph only 
shows the roll-up of the smoke oil injected into the flow, it is our view that it reflects 
a concurrent roll-up of boundary-layer vorticity and that the latter plays an 
important role in the largely inviscid instability that occurs in the presence of 
sufficiently large pressure gradients. 

This paper is concerned with the mutual effects of critical-layer nonlinearity and 
adverse pressure gradients on the spatial growth of time-periodic instability waves 
in boundary-layer flows. Since the latter are defined only in the infinite-Reynolds- 
number limit, it is appropriate to suppose that the Reynolds number is large and, 
in order to concentrate on the phenomena of interest, we take it to be large enough 
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FIGURE I .  Smoke-wire visualization of streak lines in an adverse-pressure-gradient boundary layer: 
flow is from right to left. One sees the roll-up of the smoke streaks as the instability waves progress 
downstream. A relatively large adverse pressure gradient was used here in order to make the 
boundary layer thick enough to visualize this roll-up. The eddy farthest downstream is showing 
evidence of secondary instability around its edge. The object in the background is a hot-wire probe 
which wm used to check that the flow was laminar. 

relative to the adverse pressure gradient to make the instability waves inviscid. The 
growth rate of the linear instability wave will then vanish when the adverse pressure 
gradient goes to zero, and we suppose that the latter is small enough so that a critical 
layer (which will occur only if the instability wave is near neutral) exists over most 
of the unstable range of frequencies. 

The pressure-gradient and instability-wave-amplitude scalings are adjusted to 
make the nonlinear and growth-rate terms of the same order of magnitude in the 
oritical-layer vorticity equation so that the critical layer is nonlinear and unsteady. 
There have been many previous studies of nonlinear critical layers (e.g. Benney & 
Bergeron 1969; Davis 1969; Haberman 1972, 1976; Brown & Stewartson 1978, 
1980a,b; Smith & Bodonyi 1982a, b ;  Smith, Bodonyi & Gajjar 1983; Goldstein & 
Durbin 1986), but most of them have been concerned either with equilibrium critical 
layers whose dynamics are unaffected by the instability-wave growth or with 
geophysical flows. 

While the form of the solution is strongly dependent on the upstream conditions, 
our interest is in the case where nonlinearity arises from continual downstream 
growth of an initially linear instability wave. We therefore require the nonlinear- 
growth critical layer to approach a conventional linear-growth critical layer far 
upstream in the flow (Robinson 1974). The pressure gradient must then be large 
enough to produce a linearly growing instability wave at the frequency of interest 
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since the linear inviscid critical-layer vorticity equation is dominated by the 
convection and growth-rate terms. Linear instability occurs when the vorticity 
gradient has a positive sign at the critical level, in which case the instability growth 
rate is proportional to the distance of the critical layer from the wall. We choose the 
asymptotic scaling so that this growth rate is large enough relative to the pressure- 
gradient scaling to produce the most rapidly growing instability waves that can occur 
in the flow. The pressure-induced vorticity gradient and the negative Blasius- 
boundary-layer vorticity gradient then turn out to have the same order of magnitude 
at the critical level. 

These considerations uniquely fix the asymptotic scaling, which is set out in $2 
where the problem is formulated. The classical long-wavelength solution in the form 
given by Miles (1962) is re-expanded in $3 to obtain the relevant linear solution in 
the main part of the boundary layer. In  $4 we derive the linear solution for the wall 
layer surrounding the critical layer. To simplify the algebra, the two solutions are 
then matched by working with the classical inviscid function W rather than with the 
solutions themselves. 

This provides a relation between the instability-wave growth rate and the phase 
jump across the critical layer. The critical-layer solution, which is developed in $5,  
provides a second relation between these quantities. Eliminating the phase jump 
yields a direct relation between the instability-wave amplitude and the solution of 
the nonlinear time-dependent critical-layer vorticity equation in which the 
instability-wave amplitude appears as a coefficient. The two simultaneous equations 
were solved numerically using a spectral method, and the results are discussed in $6. 
We find that critical-layer nonlinearity ultimately causes the instability wave to 
decay even though the adverse pressure gradient is strong enough to cause the 
corresponding linear instability wave to grow indefinitely. 

The ability of the nonlinear critical layer to prevent unlimited growth in the 
adverse-pressure-gradient boundary layer contrasts with a result of Goldstein & 
Durbin (1986) that shows critical-layer nonlinearity to cause unlimited growth in a 
Blasius boundary layer (see also Smith & Bodonyi 1982a). These opposite behaviours 
stem from the sign of the vorticity gradient at the critical level; a positive value 
associates the critical-layer phase jump with growth, and a negative value associates 
it with decay. Nonlinearity drives the phase jump toward zero in both cases, thereby 
eliminating either growth or decay depending on the sign of the vorticity gradient. 

2. Formulation 
We suppose that the flow is two-dimensional and that the local Reynolds number 

R, (based on the boundary-layer thickness 6) is large enough so that the unsteady 
flow is essentially inviscid and unaffected by the mean boundary-layer growth over 
the region of interest. The flow is then governed by the inviscid vorticity equation 

where 

DL2 -+u.vo = 0, 
Dt 

denotes the convective derivative based on the streamwise mean-flow velocity '(y) 
which, together with the unsteady flow velocity u = {u,v}, is normalized by the 
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free-stream velocity U,, the local streamwise and transverse coordinates x and y are 
normalized by S, the time t by &/Urn, and 

is the vorticitg. 
As indicated in $1, we suppose that the unsteady motion starts as a linear inviscid 

instability wave (which is governed by Rayleigh's equation) in the upstream region 
where x + - m. We also suppose that its normalized complex wavenumber a is small 
and that its imaginary part (which is controlled by the magnitude of the normalized 
mean pressure gradient p, i.e. the local dimensional pressure gradient, say dp*/dx*, 
where the asterisks denote dimensional quantities, times the downstream distance 
divided by the dynamic pressure pu",) is much smaller than the real part (Reid 1965). 
Then the instability wave will have a critical layer at the height y, where the real 
part of its phase velocity c is equal to U and the term in Rayleigh's equation due 
to the small growth rate -1ma just balances the convection term in a reference 
frame moving with the wave (Robinson 1974). The phase speed and wavenumber are 
related to the scaled mean wall shear A by the usual long-wavelength, small- 
growth-rate relation (Reid 1965, p. 281): 

a 
- = A ,  (2.4) 
C 

where A = dU(O)/dy. Equation (2.4) results from the requirement that the in-phase 
(i.e. real) part of the normal velocity of the wave vanish at the wall. As our analysis 
will show, it applies whenever the instability growth rate is small and its wavelength 
is long compared with the boundary-layer thickness even when the critical layer is 
nonlinear. The scaled phase jump of the linear wave AT across the critical layer is 
--x. The growth rate of the instability wave is related to AT by 

-1ma = --(Rec) 1 U"(yc)ycA~, 
2A2 

which follows from the requirement that the out-of-phase component of the normal 
velocity vanish at the wall. 

Since the normalized adverse pressure gradient p is assumed to be small, the mean 
boundary-layer velocity is given by the Blasius velocity U,  plus a small component 
Up proportional to p .  Then 

(2.6) 

tw y -+O, as is easily verified by substituting these expansions into the boundary-layer 
equation. The expansion for Up is determined by the balance of viscous and pressure 
forces near the wall. 

Equations (2.5) and (2.6) show that the instability wave will only grow if 

P- > 0, (2.7) 

since A p  < 0, and that Rec x hy,. (2.8) 

Then (as can be seen from (4.9) below) the maximum growth rate occurs when the 
order of magnitude of y: is as large as possible, subject to the constraint (2.7). The 



Vorticity in adverse-pressure-gradient boundary layers 329 

relevant scaling for the most rapidly growing instability waves then corresponds to 
the limit s-+O with 

Rec = EC, (2.10) 

Yc = E x y  (2.11) 

where p, C and Yc are order-one (real) constants. B characterizes the small pressure 
gradient. It could be defined precisely by setting ji = 1 ; however, we shall retain ji 
as a parameter to clarify the role of the pressure gradient in our analysis. Equation 
(2.4) shows that the appropriate scaling for R e a  is then 

Rea  = €a, (2.12) 

where Ol is real and order one, and it follows from (2.6) that when y = 0(1) 

u = UB+BTP, (2.13) 

where V p + i y ~ +  ... as y+O. (2.14) 

The amplitude of the instability wave increases as it propagates downstream and, 
since I m a  = 0(e4) is small compared to Red = O(s), nonlinear behaviour first 
becomes important within the critical layer. 

In  the region outside this layer, where the instability wave continues to behave 

a* 
aY ' 

linearly, its-streamfunction, 
u = -  (2.15) 

(2.16) 

will be of the form * = A@,) Y(Y, 51) eiX, (2.17) 

where we have put XI = €42.  (2.18) 

The amplitude A(x,) and x = €E(X-€i3) (2.19) 

are real quantities, and, to the required level of approximation, y satisfies Rayleigh's 
equation 

( U - c ) ( D a - d ) y - U " y  = 0, (2.20) 

where the complex wavenumber and phase speed, a and c respectively, are given by 

(2.21) 
€4 

iA 
a = &+,A', 

(2.22) 
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The primes denote differentiation with respect to the relevant arguments, and we 

(2.23) 
have put 

D = - .  a 
aY 

Finally, y must satisfy the inviscid wall boundary condition 

y = O  a t y = O .  (2.24) 

3. Solution in main boundary layer 
In the following two sections we derive dispersion relations for the instability-wave 

amplitude outside the critical layer. These arise from the matching requirements 
between the solutions in the main boundary layer and wall layer. 

First, suppose that y = O(1). A number of investigators have obtained asymptotic 
expansions of the solution to (2.20) that are uniformly valid for y = 0(1) and y 2 1 
in the limit as a+O. The solution to the present problem is most easily obtained by 
re-expanding such a solution for small c. Since we need only know the logarithmic 
derivative of our solution, the most convenient solution turns out to be the one given 
by Miles (1962), obtained by transforming (2.20) into a Riccati equation. His result 
can be written as 

where 

and 

1 
a( 1 - c ) ~  

a* = + Q, + aQ, + a2Q2 + . . . , 

(3.5) 

A simple derivation is given in Reid (1965, p. 279). Substituting this into the classical 
'inviscid function' (Lin 1955, p. 37) 

inserting (2.13), (2.21) and (2.22) into the result, expanding for small 8,  and finally 
using (2.6) and (2.14) and expanding for small y, we obtain 
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(3.8) 

( 3 . 9 ~ )  

(3.9b) 

(3.9c) 

(3.9d) 

(3.9e) 

C+O 
U + U B  

are order-one r e d  constants. 

4. The critical level (wall layer) 
The re-expansion (3.7) is invalid at distances from the wall of the order of the 

critical-layer distance yc = O(s) since it corresponds to the limiting process a+O with 
y fixed. The solution for this region is most easily obtained by introducing the scaled 
transverse coordinate Y Y E -  

€ 

directly into (2.20). Inserting this along with (2.6), (2.13), (2.14), (2.21) and (2.22) 
into (2.20), we find the solution that satisfies the boundary condition (2.24) is of the 
form 

y = ~ ( A + E ~ ~ ) Y + E ~ F ( Y , Z ~ ) + . . .  

where a, is an order-one constant (which may depend on a) and F satisfies 

(4.2) 

w=%(’+&)-WY(yC+ a2F Y), 
(4.3) 

where j i c  is given by (3.8) and we have used the fact that 

(4.4) 

where Yc is defined by (2.11). Since (4.3) is singular at Y = yC, F can certainly be 
discontinuous across Y,, and we denote by F* the solution above/below this point. 
Integrating (4.3) and imposing the boundary condition (2.24), we obtain 

- 
c = AY,+O(€), 

A2 + yC(ln Yc+itp-)]}-- 4.3!  ~ K + f Y ) ,  (4.5) 

where the constants of integration tp* are, in general, complex functions of zl. 
As already anticipated, this solution is most easily matched onto the solution in 

the main boundary layer (where y = O( 1)) by working with the inviscid function W. 
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Inserting (2.6), (2.13), (2.14), (4.1), (4.2) and (4.5) into (3.6) and re-expanding, we 
obtain 

for Y > Y,, where we have put 
Aq= q_-q+. 

Matching this with (3.7) shows that we must have 

(4.7) 

and 
_ _  

_ -  A' ZyCAq. 
A (4.9) 

Equation (4.8) is a dispersion relation which determines iji in terms of E (or in terms 
of the scaled Strouhal number EE). Since its coefficients are all real it  is consistent 
with our original assertion that a and C are real quantities. It shows that E and t3 
possess power-series expansions in E and that they are consistent with our anticipated 
result (2.4) to lowest order. 

Equation (4.9) corresponds to the imaginary part of the dispersion relation; it 
relates the (slow) growth rate of the instability wave A' /A  to the phase jump AT 
across the critical layer. To determine this latter quantity it is necessary to consider 
the flow in the critical layer. 

5. The critical layer 
The flow in this region is governed by the vorticity equation (2.1), and we shall 

adjust the scaling of A so that it is nonlinear, i.e. we shall determine the exponent 
r in 

A = crZ& (5.1) 

so that 24 is order one and we have put 

Equations (2.3), (2.6), (2.13), (2.14), (2.17), (2.18), (2.19), (4.1) and (4.2) suggest 

(5.3) 

that the vorticity will possess an expansion of the form 

52 = - A - € 3  y,@-&h") +sr- lw(x ,  T/l,Z,) + . . . , 
where we have taken X and x1 as independent variables in place of 2 and t and we 
have chosen the scaled transverse coordinate 

- Y - y ,  v=- 
€3 

(5.4) 

to make the growth rate and linear convection terms of the same order of magnitude. 
Inserting these together with (2.6), (2.10), (2.11), (2.13), (2.16), (2.17) and (4.2) into 
(2.1) and (2.2) and retaining the lowest-order nonlinear term, we obtain 
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(see Benny & Bergeron 1969; or Smith & Bodonyi 1982a,b, for a more detailed 
derivation). The nonlinear term will be of the same order aa the remaining terms if 

(5.6) 
we put r = 7. 

It is convenient to introduce the new scaled coordinates 

- xi 
and z =T(Y&)lz,-Zo c =h2(Y&)fz1-zo, (5.8) 

where the effective origin xo will be fixed subsequently (by (5.19) below). Equation 
(5.5) now becomes 

Corresponding to the expansion (5.3), the streamwise velocity U+u in the critical 
layer will have an expansion of the form 

u = &A( Yc &)fq  + e"q( Y, @-&AS Y",) Y, + (h+eao) Z& cog XI 
+e"'jiC Y,&;ll+. . . , (5.10) 

where 
az 

W = -iic Y r -, 
c O a q  

(5.11) 

and in order to match with (2.6)-(2.15), (2.17) and (4.2), we must have 

Pc Y, n + i  

- 
- A 
u+h2+?Re(F; eiX)+Re X bf einX asq++oo.  (5.12) 

It is easy to show that there is an outer inviscid solution that can match the 
higher-harmonic terms in (5.12), but our interest is in the original instability wave 
itself and we shall not discuss this further. 

From (5.12), Z,,+q, so on introducing the new variable 

Q Z,,-q, (5.13) 

we find from (4.4), (4.6), (4.8), (&lo), (5.11) and (5.12) that Q must satisfy the 
inhomogeneous equation 

a )  (az ax a71 

a a -  
-+q-+A sinX- Q = --;IsinX (5.14) 

and vanish as q+foo .  Since (5.12) and (4.5) show the phase jump to be the jump 
in u / A ,  the amplitude equation (4.9) can be rewritten as 

dz 
QdqdX=-- 

It die' 
(5.15) 

where the improper integral j" Qdq is defined in the usual way by 
--m 

W M 
J-,Qdq = lim Qdq. 

Equations (5.14) and (5.15) determine the simultaneous evolution of Q and the 
scaled amplitude 2 of the instability wave; they must be solved subject to 

M*W J-M 
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appropriate initial conditions. We have already indicated that we are interested in 
the case where the nonlinear critical layer evolves from a linear-growth critical layer 
far upstream, which means that 

- 
A+e"; r > O  asZ+-m. (5.16) 

Then the nonlinear term drops out of (5.14), and integrating the resulting linear 
equation, we find that . -. 

Q+euz Re- elx as Z+- 00, (5.17) 

which is the usual form for the vorticity in the linear-growth critical layer (Robinson 
1974). 

Inserting (5.17) into (5.15), we find that 

u = A,  (5.18) 

which is the usual linear growth rate for a near-neutral (slowly growing) instability 
wave. To fix its scaled initial amplitude, say A,, in the original z1 coordinate system, 
we can put 

(5.19) 

6. Numerical methods 

methods. Since Q is periodic in X, we expand it in a Fourier series 
The nonlinear evolution equations (5.14) and (5.15) must be solved by numerical 

with Q-n = Q: 
(where the asterisk denotes the complex conjugate) to obtain 

dz 

where X satisfies f5.161 and 

for n = 0,1,2,  . ,  

We solved (6.3) and (6.4) numerically, using a procedure similar to the one used 
by Haynes (1985). Rather than mapping the infinite domain - 00 < q < co into a 
finite domain, Haynes simply solved the equation over a finite range, say 
- M  < T,I < M ,  and used the asymptotic behaviour of Q as q+f  00 to obtain an 
accurate approximation to the integral in (6.4). In the present case it is easy to show 
by considering the dominant balance in (5.14) for large 7 that 

asq+foo. (6.6) 



Vorticity in adverse-pressure-gradient boundary layers 335 

It follows that 
1 d Z  

Im&,+- -+O(q+),  qs  CE 

as q+f co, and consequently that (6.4) can be approximated by 

Im j M  Q1 dq = (1 -2) e+ 0(M-4). 
-M M d Z  

The numerical integration of (6.3) and (6.4) begins in the linear-growth regime 
where (5.16) and (6.5) provide initial conditions at say Z = Zo. Integrating (6.3) 
forward to the next position in 5 we obtain 

where (6.9) 

8, was expanded in a Taylor series for small AZ and the result integrated term by 

(6.10) 

term to yield 
as, - 

Qn@, 7) = An &n(zo, 7) +Bn Sn(zo,q) + C ,  - a3  (z0, 7) + o ( A ~ ) ,  

where A = e-inqAZ 
n 

1 - e-inTAZ 

B, = inq’ j 
B, - AZ c, = 
( - inq) ‘ 

(6.11) 

Note that aS,(Z,,, q ) / Z  can be evaluated from a knowledge of &, at Zo, and hence 
(6.10) provides a recursive formula for evaluating the evolution of Qn(Z, 7). Deriva- 
tives with respect to  q were evaluated by centred finite differences, and values for 
&, at 7 = & M were obtained from the asymptotic condition (6.6). The series equation 
(6.1) was truncated by setting &, = O  for n >  N where N was chosen so that 
I Q N I  < I&,I throughout the computation: presumably this justifies setting the higher 
modes to zero. 

7. Numerical results and discussion 
Goldstein & Durbin (1986) considered the effect of a nonlinear viscous critical layer 

on the spatial growth of a time-harmonic Tollmien-Schlichting wave. They pointed 
out that the nonlinear critical-layer effects altered the linear instability wave through 
their effect on its scaled phase jump across the critical layer and that Haberman’s 
result could be used to determine this phase jump as long as the Haberman parameter 
was given the proper interpretation. Haberman’s result shows that nonlinear 
critical-layer effects drive the phase jump to zero. In  the present analysis, the 
critical-layer dynamics are quite different from those of the Haberman critical layer. 
The instability-wave amplitude now appears as a variable coefficient rather than as 
a parameter as it  does in the Haberman analysis. This means that the critical-layer 
vorticity equation must be solved simultaneously with the amplitude equation for 
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---Linear growth 

I --I- 
4 5 6 7 

ux 

FIQIJRE 2. Scaled amplitude function us. linear amplitude. 

ux 

FIQURE 3. Scaled phase jump across critical layer us. streamwise distance. 
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FIGURE 5(a). For caption see p. 339. 

the external instability wave. However, the net effect on the scaled phase jump is 
quite similar : the nonlinear effects again drive it toward zero. 

Goldstein & Durbin (1986) point out that the nonlinear critical layer eliminates 
the upper branch of the neutral stability curve in the Blasius boundary layer. The 
small adverse pressure gradients being considered here also eliminate the Blasius 
upper branch (even for the linearly growing instability wave) in the sense that they 
allow a wave of fixed frequency to grow indefinitely when its frequency is sufficiently 
small. But now the nonlinear critical layer acts to reinsert that upper branch. Figure 2 
is a plot of the logarithm of the scaled amplitude Z of the instability wave versus 
gZ. The amplitude clearly follows the linear-growth curve (45' line) until vZ x 4. It 
then reaches a peak and begins to slowly decay, i.e. there is now an upper branch 
to the neutral stability curve. The existence of the upper branch is seen more clearly 
in figure 3 which is a plot of the scaled phase jump Atp across the critical layer versus 



338 

60 

30 

1 

0 

- 30 

-60 
0 

M .  E.  Uoldstein, P. A .  Durbin and S. J .  Leib 

40 

30 

x 
X 

20 

10 

0 
- 10 

- 20 

- 30 

-40 

2rr 

40 

30 

20 

30 

7 10 
0 0 

- 10 

- 20 

- 30 

-40 

- 30 

-60 
0 II 

X 

FIGURE 5 ( b ,  c). For caption see facing page. 
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FIQURE 5. Vorticity contours in the nonlinear critical layer in the (X, T)-plane: 
(a) uZ = 3, (b)  3.5, (c) 4.0, (d) 4.5, (e) 5.0. 
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FIQWE 6. Vorticity contours from the linear solution in the ( X ,  v)-plane: (a) uit = 3, (a) 4, (c) 5. 

the scaled streamwise coordinate CTZ. Notice that, unlike the viscous case, the phase 
jump now becomes positive (indicating decay) over a certain range of conditions. 

The effect on the critical-layer vorticity is equally dramatic. The streamlines in the 
nonlinear viscous critical layer (Haberman 1972) exhibit the familiar cat’s-eye 
pattern, with the vorticity being constant everywhere within the cat’s eye (see figure 
4). This region of constant vorticity just spreads out laterally as the wave propagates 
downstream. 

In  the present case, the lines of constant vorticity roll-up into tighter and tighter 
spirals as the wave propagates downstream. Figure 5 shows the downstream 
evolution of the vorticity contours in the (X, q)-plane at a number of Z-locations. 
We attribute the irregularity of the disturbed contours and the appearance of the 
small closed contours in figure 5(e) to numerical errors introduced by the k i t e -  
difference evaluation of the cross-stream derivative in (6.3) and the truncation of 
the Fourier series. This is based on test runs where refining the finite-difference 
mesh and including higher modes smoothed out the vorticity contours considerably ; 
other modifications produced no significant improvement. 

For comparison, figure 6 shows the downstream evolution of the vorticity contours 
from the linear-growth solution ((5.13) and (5.17)). It can be seen by comparing 
figures 5(a) and 6(a)  that the initial shearing of the vorticity contours is described 
by the linear solution. The subsequent roll-up, however, is not : compare figures 5 ( c )  
and 6 ( b ) .  Instead the linear solution predicts the continued shearing of the vorticity 
and the eventual appearance of large closed contours as illustrated in figures 6 ( b  
and c). 
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